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Abstract. The self-similar renormalization group is used to obtain expressions for the spectrum
of the Hamiltonian with the Yukawa potential. The critical screening parameter above which
there are no bound states is also obtained by this method. The approach presented illustrates that
one can achieve good accuracy without involving extensive numerical calculations, but invoking
instead the renormalization-group techniques.

1. Introduction

Renormalization-group techniques are widely used in quantum field theory, statistical
mechanics, and solid-state physics. Their usage in atomic physics is less customary. The
aim of the present paper is to show how renormalization-group ideas can be applied for
calculating the spectra of quantum-mechanical Hamiltonians with realistic potentials.

As a model for illustration we opt for a Hamiltonian with the Yukawa potential. This
choice is based on the special role of this potential in different branches of physics. In plasma
physics it is known as the Debye–Hückel potential, in solid-state physics and atomic physics
it is called the Thomas–Fermi or screened Coulomb potential, and in nuclear physics one
terms it the Yukawa potential. Among recent important applications of this potential we
may mention its use in the models describing the metal–insulator transition [1].

The problem of finding the energy levels for the Yukawa potential has received a lot of
attention in the literature. Several approaches have been used for solving this problem: the
simple variational procedure [2], use of atomic orbitals with a set of fitting parameters [3],
Rayleigh–Schr̈odinger perturbation theory [4, 5], the method of potential envelopes [6–9],
an iterative procedure [10], and different numerical calculations [11–14].

In this paper we demonstrate how the problem can be treated by employing the self-
similar approximation theory [15–19] based on the ideas of the renormalization-group and
dynamical theory. The outline of the paper is as follows. In section 2 we sketch the main
steps of the procedure using the self-similar renormalization group. We present only those
formulae that are necessary for understanding the following calculations; all details and the
mathematical foundations can be found in [15–19]. In section 3 we apply the approach to
the Schr̈odinger equation with the Yukawa potential. In section 4 we obtain the sequence of
renormalized energies. The convergence of this sequence is governed by control functions
defined from the minimum of the multiplier. In section 5 the procedure is applied to calcu-
lating the renormalized critical screening parameter. We emphasize that we are presenting
here an analytical method, not relying on heavy numerical calculations. Despite its analytical
nature, the method gives quite good accuracy for the critical screening parameter obtained.
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2. Self-similar renormalization

We give here the general sketch of the procedure [15–19], without specifying the nature of
the functions involved. Suppose a functionf (x) is defined by a complicated equation that is
being solved approximately. Employing a perturbative algorithm, we obtain a sequence of
approximations,{Fk}∞k=0, for the sought functionf (x). To make the sequence convergent,
we incorporate into the approximationsFk = Fk(x, uk), with k = 0, 1, 2, . . . , a set of
control functionsuk = uk(x), so that the sequence{fk(x)}∞k=0 of the approximations

fk(x) ≡ Fk(x, uk(x)) (1)

is convergent.
We make the change of variables by defining a functionxk(f ) through the equation

F0(x, uk(x)) = f x = xk(f ) (2)

in which f is the new variable. With this change of variables, equation (1) yields

yk(f ) ≡ fk(xk(f )). (3)

The transformation inverse to equation (3) is

fk(x) = yk(F0(x, uk(x)). (4)

We now construct an approximation cascade{yk} by requiring the self-similarity relation

yk+p(f ) = yk(yp(f )). (5)

The trajectory{yk(f )}∞k=0 of this approximation cascade is, according to equations (3) and
(4), bijective to the sequence{fk(x)}∞k=0 of approximations in equation (1). Embedding the
approximation cascade into an approximation flow and integrating the evolution equation
for the latter, we obtain the evolution integral∫ f ∗k+1

fk

df

vk(f )
= t∗k (6)

in which fk = fk(x) is a given approximation,f ∗k = f ∗k (x) is a renormalized self-similar
approximation, and

vk(f ) = Fk+1(xk, uk)− Fk(xk, uk)+ (uk+1− uk) ∂
∂uk

Fk(xk, uk) (7)

is the cascade velocity, wherexk = xk(f ) and uk = uk(xk(f )). The right-hand side
of equation (6), that ist∗k , is the minimal time necessary for reaching the renormalized
approximationf ∗k+1(x).

A fixed pointy∗k (f ) of the approximation cascade represents, by construction, the sought
functionf (x) which can be obtained from transformation (4). At the fixed point the cascade
velocity vk(f ) → 0 as k → ∞. If the cascade velocity is not zero exactly, but only
approximately, then we do not have an actual fixed point, but a quasi-fixed point. For
instance, assuming thatvk(f ) ≈ 0 andFk+1 ≈ Fk, from equation (7) we have

(uk+1− uk) ∂
∂uk

Fk(x, uk) = 0 (8)

which is a quasi-fixed-point condition.
The convergence of the approximation sequence{fk(x)}∞k=0 is equivalent to the stability

of the cascade trajectory{yk(f )}∞k=0. The stability of the latter can be analysed by defining
the multipliers

µk(f ) ≡ ∂

∂f
yk(f ) (9)
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and

mk(x) ≡ δFk(x, uk(x))

δF0(x, uk(x))
. (10)

These multipliers are images of each other, being related by the transformations

µk(f ) = mk(xk(f )) mk(x) = µk(F0(x, uk(x))). (11)

The trajectory is locally stable when

|mk(x)| 6 1 |µk(f )| 6 1. (12)

The multipliers (9) and (10) describe the local stability, at the stepk, of the cascade trajectory
with respect to the variation of initial conditions. This type of local multiplier can be called
a quasi-local multiplier [19]. Another type of local multiplier defined as

m∗k(x) ≡
mk(x)

mk−1(x)

characterizes the local stability, at the stepk, with respect to the variation of the pointk−1.
The latter multiplier can be termed ultra-local.

Recall that control functions are introduced so as to provide the convergence of the
approximation sequence{fk(x)}∞k=0, that is, the stability of the cascade trajectory{yk(f )}∞k=0.
This suggests a way for the practical definition of control functions. The local multiplier
(10) may be written as

mk(x) = Mk(x, uk(x)) (13)

with

Mk(x, u) = ∂Fk(x, u)

∂u

/
∂F0(x, u)

∂u
. (14)

To produce the maximal stability of the cascade trajectory, i.e. the fastest convergence of
the approximation sequence, for each fixed value ofx, we have to require the minimum of
the absolute value for the multiplier (13) with respect to the control functionuk(x). In other
words, the principal of maximal stability is the condition for the minimum of the multiplier
modulus,

min
u
|Mk(x, u)| = |Mk(x, uk(x))|. (15)

This condition gives us a constructive definition of control functions.

3. Yukawa potential

Now we illustrate how the scheme of section 2 applies in the calculation of the eigenvalues
of the radial Hamiltonian

H = − 1

2m

d2

dr2
+ l(l + 1)

2mr2
− A
r

e−αr

with the Yukawa potential.
It is convenient to pass to dimensionless quantities by scaling the above Hamiltonian

and reducing it to the form

H = −1

2

d2

dr2
+ l(l + 1)

2r2
− e−αr

r
. (16)
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Herer ∈ [0,∞); l = 0, 1, 2, . . . ; andα is a positive constant called the screening parameter.
To return back to dimensional quantities one has to make the following substitutions:

r → mAr α→ α

mA
H → H

mA2
.

Write Hamiltonian (16) as the sumH ≡ H0 + 1H , with the first term being the
Hamiltonian

H0 = −1

2

d2

dr2
+ l(l + 1)

2r2
− u
r

(17)

with a Coulomb-type potential, whereu is a yet unknown quantity which will later generate
control functions.

Employing some variant of perturbation theory in powers of the perturbation

1H ≡ H −H0 = u− e−αr

r
(18)

we may construct a sequence of approximate eigenvalues,Ek, and eigenfunctions,ψk,
respectively,

Ek ≡ E(k)nl (α, u) ψk ≡ ψ(k)
nl (r, u) (19)

wherek = 0, 1, 2, . . . enumerates approximations, whilen = 0, 1, 2, . . . and l = 0, 1, 2, . . .
are the quantum numbers labelling the energy levels. For the initial approximation one has
the spectrum

E0 = − u2

2(n+ l + 1)2
(20)

and the wavefunction

ψ0 =
[

n!u

(n+ 2l + 1)!

]1/2 1

n+ l + 1

(
2ur

n+ l + 1

)l+1

exp

(
− ur

n+ l + 1

)
×L2l+1

n

(
2ur

n+ l + 1

)
(21)

in which

Lln(r) =
n∑

m=0

0(n+ l + 1)(−r)m
0(m+ l + 1)(n−m)!m!

is an associate Laguerre polynomial.
To find the subsequent approximations, we could use the Rayleigh–Schrödinger

perturbation theory. However, this would involve the following complication. The whole
spectrum of the Hamiltonian (16) contains, in addition to discrete levels, the continuous
part. Therefore, we would have to deal with, besides the summation over discrete levels,
the integration over continuous ones.

To avoid this complication, when we are interested only in discrete levels, we may
employ the Dalgarno–Lewis perturbation theory [20]. Then, for thek-approximation one
writes

Ek = E0+
k∑

p=1

1Ep

ψk = ψ0+
k∑

p=1

1ψp. (22)
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The first correction for the eigenvalues is

1E1 = (ψ0,1Hψ0) (23)

and the first correction to the eigenfunction is a solution to the equation

(H0− E0)1ψ1 = (1E1−1H)ψ0. (24)

Solving the Dalgarno equation (24), one may calculate the second correction to the
eigenvalues,

1E2 = (1ψ1,1Hψ0) (25)

and so on.
The Dalgarno equation (24) is a non-homogeneous equation whose solution can be

written as the sum of the general solution to the corresponding homogeneous equation plus
a particular solution to the non-homogeneous equation. The solution to the homogeneous
equation is, as is evident, proportional toψ0. So we may set

1ψ1 = Cψ0+ ϕ (26)

with the proportionality constantC defined by the normalization condition(ψk, ψk) = 1,
and the functionϕ being a particular solution to the non-homogeneous equation

(H0− E0)ϕ = (1E1−1H)ψ0. (27)

From the normalization condition(ψ1, ψ1) = 1, for the functionψ1 = ψ0+1ψ1, omitting
the second-order term, one has

(ψ0,1ψ1) = 0. (28)

With equation (26), this gives

C = −(ψ0, ϕ). (29)

Following the scheme described, with the notation

β ≡ α

2u
(n+ l + 1) (30)

we obtain the first correction for the eigenvalues of bound states,

1E1 = u2I0− uIβ
(n+ l + 1)2

(31)

where the integral

Iβ ≡ n!

(n+ 2l + 1)!

∫ ∞
0
r2l+1 e−(1+β)r [L2l+1

n (r)]2 dr

can be expressed as

Iβ = (β − 1)n

(β + 1)n+2l+2
P2l,0
n

(
β2+ 1

β2− 1

)
through the Jacobi polynomials

Pk,pn (x) = (−1)n

2nn!
(1− x)−k(1+ x)−p dn

dxn
[(1− x)n+k(1+ x)n+p]

= 1

2n

n∑
m=0

Cmn+kC
n−m
n+p (x − 1)n−m(x + 1)m
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having the properties

Pk,pn (1) = Cnn+k Pk,pn (−1) = (−1)nCnn+p Cmn ≡
n!

(n−m)!m!
.

Another integral in equation (31) is

I0 ≡ lim
β→0

Iβ = 1.

In this way, the first approximationE1 = E0+1E1 becomes

E1 = u2− 2uIβ
2(n+ l + 1)2

(32)

where

Iβ = 1

(1+ β)2n+2l+2

n∑
m=0

Cmn+2l+1C
n−m
n β2m.

For the ground-state level, whenn = l = 0 andβ = α/2u, equation (32) reduces to

E1 = −u2( 1
2 − σ) (33)

where the notation

σ ≡ 1− 4u

(2u+ α)2 (34)

is introduced.
The ground state plays a special role defining, when it becomes zero, the critical

screening parameterαc, above which there are no bound states. Therefore, in what follows
we consider the ground state.

Equation (27), with

E0 = −u
2

2
ψ0 = 2u3/2r e−ur (35)

can be written as(
−1

2

d2

dr2
− u
r
+ u

2

2

)
ϕ =

(
σu2− u

r
+ e−αr

r

)
ψ0. (36)

The solution to equation (36) must be a bounded function,|ϕ(r)| <∞, for all r ∈ [0,∞].
Let us presentϕ as the product

ϕ(r) = ψ0(r)g(ur)

in which the second factor satisfies the equation

d

dr
g(r) = ρ(r)e2r

r2

whereρ(r) is to be defined from equation (36), which yields

dρ

dr
= (1− σr)2r e−2r − 2r

u
exp

(
−2u+ α

u
r

)
.

The latter equation gives

ρ(r) =
[
σr2+ (σ − 1)

(
r + 1

2

)]
e−2r + 1− σ

2

(
1+ 2u+ α

u
r

)
exp

(
−2u+ α

u
r

)
+ C1
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with an integration constantC1. The equation forg(r) results in

g(ur) = σur + (1− σ)
[

1− e−αr

2ur
− ln(ur)+ Ei(−αr)

]
+ C1

[
2 Ei(2ur)− e2ur

ur

]
+ C2

whereC2 is an integration constant and

Ei(ar) =
∫ r

−∞

eax

x
dx

is the exponential-integral function.
The boundness ofϕ requires thatC1 = 0. The additive term containing a function

proportional toψ0 should be omitted inϕ, since such a term has already been included in
equation (26). The latter means that we have to putC2 = 0. As a result we obtain

ϕ(r) = √u e−ur{2σ(ur)2+ (1− σ)[1− e−αr − 2ur ln(ur)+ 2ur Ei(−αr)]}. (37)

For the normalization constant in equation (29) we find

C = −3

2
σ + (1− σ)

(
α

2u+ α − ln
2α

2u+ α − γE

)
(38)

with the Euler constantγE = 0.577 215.
After finding function (26), we can calculate the second correction (25), which yields

1E2 = u2J1− uJ2 (39)

where

J1 = lim
ν→0

J2(ν) J2 = J2(β)

with β = α/2u, and

J2(ν)=2
∫ ∞

0

{
2Cr + 2σr2+ (1− σ)

[
1− e−αr/u − 2r ln r + 2r Ei

(
− αr
u

)]}
e−2(1+ν)r dr.

Thus, for the second approximation for the energy we obtain

E2 = E1+ u2J1− uJ2 (40)

where

J1 = −σ
2
+ 1− σ

1+ β β

J2 = −u(1− σ)σ(1+ 3β)

2(1+ β) + u(1− σ)
2

[
(1+ 3β + β2)β

(1+ β)(1+ 2β)
+ ln

(1+ β)2
1+ 2β

]
.

4. Renormalized energy

From the results of the previous section we derive the following sequence of approximations
for the energy:

E0 = −u
2

2

E1 = E0+ u2− 4u3

(2u+ α)2

E2 = E1− u
2

2
+ 2u3

(2u+ α)2 +
4u3α

(2u+ α)3 +
2u3(2u2+ 5uα − 2α + 3α2)

(u+ α)(2u+ α)3

−8u4(2u2+ 5uα + 4α2)

(u+ α)(2u+ α)5 − 16u4

(2u+ α)4 ln
(2u+ α)2
4u(u+ α) . (41)
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For the multiplier defined in equation (14) we have

Mk(α, u) = ∂Ek(α, u)

∂u

/
∂E0(α, u)

∂u
. (42)

Substituting here the derivatives

∂E0

∂u
= −u

∂E1

∂u
= u− 12u2

(2u+ α)2 +
16u3

(2u+ α)3
following from the sequence (41), we find

M1(α, u) = −8u3− 4(2− 3α)u2− 6α(2− α)u+ α3

(2u+ α)3 . (43)

The control functionu(α) = u1(α) is to be defined from the principle of maximal stability
(15). To this end, we first try the equation

M1(α, u) = 0 (44)

which gives

8u3− 4(2− 3α)u2− 6α(2− α)u+ α3 = 0. (45)

This cubic equation has three roots of which we have to select a real one satisfying the
asymptotic condition

lim
α→0

u(α) = 1.

The latter implies that if the screening parameter tends to zero, so that the Yukawa potential
transforms into the Coulomb one, then one must return to the exact solution known for the
Coulomb potential. Really, underα→ 0 andu→ 1, from the sequence in equation (41) it
follows that Ek → − 1

2 for all k. Equation (45), with this asymptotic condition, yields the
control function

u(α) = 1

3
− α

2
+ 2

3

√
1+ 3

2
α cos

ϕ

3
(46)

in which

ϕ =
{
ϕ∗ ϕ∗ > 0, 06 α 6 (3+√57)/18

π − ϕ∗ ϕ∗ 6 0, (3+√57)/186 α 6 α0

where

ϕ∗ = arctan
3α
√

3(3+ 20α − 27α2)

4+ 9α − 27α2

and the upper value of the screening parameter, below which equation (45) possesses a
solution, is

α0 ≡ 10+ 7
√

7

27
= 1.056 306. (47)

Thus, solution (46) exists only in the interval 06 α 6 α0. For α > α0, equation (45) has
no real solutions satisfying the derived asymptotic condition.

For α > α0 we need to find a minimum of the multiplier (43), which is not necessarily
zero. This can be done by solving the equation

∂

∂u
M1(α, u) = 0 (48)
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which results in the control function

u(α) =
(√

7

2
− 1

)
α = 0.322 876α. (49)

One may note that when equation (44) has a solution, then the procedure is similar to
renormalizing perturbative terms by means of a variational optimization [21–26]. However,
as is shown above, this equation does not always possess physically reasonable solutions,
while the principle of maximal stability (15) always provides us with a solution defining
a control function. Therefore, this principle is more general than the simple variational
procedure.

Substituting the found control function into the approximations in the sequence (41),
we get the renormalized expressions

ek(α) ≡ Ek(α, uk(α)). (50)

For example, whenα 6 α0, we have

e1(α) = −u
2(2u− α)

2(2u+ 3α)
(51)

e2(α) = −u
2

2

[
8u4+ 16u3α − 2u2α2− 10uα3+ α4

2u(u+ α)(2u+ 3α)2
+ 2

(
2u+ α

2u+ 3α

)2

ln
(2u+ α)2
4u(u+ α)

]
.

(52)

Respectively, forα > α0, we have to substitute the control function (49) into equation (41).
The self-similar approximation for the energy is to be defined from the evolution integral

(6). When no additional constraints are imposed, the minimal number of steps for reaching
a quasi-fixed point is, clearly, one,t∗k = 1. In the interval 06 α 6 α0, the cascade velocity,
given by equation (7), is

v1(f ) = e2(α(f ))− e1(α(f )) (53)

where the functionα(f ), according to equation (2), is defined by the equation

E0(α, u(α)) = − 1
2u

2(α) = f (54)

resulting inα = α(f ). For the evolution integral (6), we have∫ e∗2

e1

df

v1(f )
= 1 (55)

wheree1 = e1(α) ande∗2 = e∗2(α).
We have calculated the values of the renormalized energiese1(α), e2(α) and e∗2(α)

as functions of the screening parameterα. To characterize the accuracy of these
approximations, it is convenient to introduce the maximal percentage errors

εk ≡ max
α

[
ek(α)− e(α)
|e(α)|

]
× 100%

where e(α) is an exact value of the energy. Notice that this definition of the maximal
error has sense only whene(α) is not close to zero. In our case this definition works for
0 6 α 6 α0. For α > α0, whene(α)→ 0, it is possible to redefine the maximal error by
shifting the definition of the energy by a constant [27].

The maximal percentage error, defined as is explained above, is 2% fore1(α) and for
e2(α) and e∗2(α) it is 1%. The multipliers (10), withα instead ofx, satisfy the stability
conditions of section 2. The stability of the procedure means its convergence, which is also
evident from the improvement of accuracy.
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5. Critical screening

An important quantity characterizing the features of the Yukawa potential is the critical
screening parameter, that is, such a value of the screening parameterα = αc above which
there are no bound states. This critical parameter is defined by the conditione(αc) = 0. For
each approximationek(α) for the ground-state energy there exists the corresponding critical
parameterαk given by the equation

ek(αk) = 0. (56)

From the approximationsek(α) obtained in the previous section, we find the sequence of
approximations for the critical screening parameters:

α1 = 1 α2 = 1.0833. (57)

To employ the self-similar renormalization for the sequence{αk}, as is described in section 2,
we compose a sequence{αk(λ)} of the partial sums

αk(λ) =
k∑
i=1

(αi − αi−1)λ
pi (58)

in which k > 1 andα0(λ) ≡ 0. As is clear from equation (58),

αk = lim
λ→1

αk(λ). (59)

Then the sequence of approximations

α1(λ) = α1λ
p1

α2(λ) = α1λ
p1 + (α2− α1)λ

p2

can be renormalized in the way prescribed by section 2. First, we define the expansion
functionλ(f ) by the equation

α1(λ) = α1λ
p1 = f

which gives

λ(f ) =
(
f

α1

)1/p1

.

Writing the cascade velocity as

v1(f ) = α2(λ(f ))− α1(λ(f )) = (α2− α1)λ
p2(f )

we come to the evolution integral∫ α∗2(λ)

α1(λ)

df

(α2− α1)λp2(f )
= t∗. (60)

Notice thatα∗2(λ) in equation (60) also depends on the parameters

p ≡ p1 > 0 q ≡ p2

p1
− 1> 0 (61)

so that we may write

α∗2(λ) = α∗2(λ, p, q). (62)

Integrating equation (60), we obtain

α∗2(λ, p, q) =
[

α
1+q
1 λpq

α1− q(α2− α1)λpqt∗

]1/q

. (63)
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To definep andq, consider the sequence{ȳk(f )} of the termsȳk(f ) ≡ αk(λ(f )). Thus,
we have

ȳ1(f ) = f

ȳ2(f ) = f + (α2− α1)

(
f

α1

)q+1

.

For the latter sequence we can find the multipliers defined as in equation (14). As is obvious,
M1 = 1 and

M2(λ, p, q) = 1+ (α2− α1)(1+ q)λpq. (64)

The values ofp andq are chosen so as to satisfy the principle of maximal stability (15),
with p andq playing the role of control functions. Since, according to condition (59), we
must put at the endλ→ 1, we can consider the multiplier (64) forλ ∼ 1. In the case when
λ > 1, the minimum of|M2| from equation (64) is provided byq = 0. But if λ < 0, then
this minimum can occur atq = 1. Here we keep in mind thatq, given by equation (61), is
an integer and that the differenceα2 − α1 is positive in agreement with equation (57). In
this way, from expression (63) we derive

α∗2(λ, p,0) = α1λ
p exp

(
α2− α1

α1
t∗
)

(65)

if q = 0, and

α∗2(λ, p,1) = α2
1λ

p

α1− (α2− α1)λpt∗
(66)

whenq = 1.
The effective timet∗ has the meaning of the minimal number of steps providing the

renormalization ofαk, whenλ→ 1. If we putλ→ 1 in the evolution integral (60) before
the integration, then forα∗2 we getα1 + (α2 − α1)t

∗. From here we see thatt∗ = 0 gives
α1, one step, that ist∗ = 1, leads toα2, and t∗ = 2 results in 2α2 − α1. Therefore, the
minimal number of steps necessary for obtaining a non-trivial renormalization ist∗ = 2.

Equations (65) and (66) show that, whenλ = 1, then α∗2 does not depend onp.
Consequently, we may write

α∗2(1, q) ≡ α∗2(1, p, q). (67)

Putting t∗ = 2 andλ = 1 in equations (65) and (66), we obtain

α∗2(1, 0) = α1 exp

(
2
α2− α1

α1

)
(68)

and, respectively,

α∗2(1, 1) = α2
1

3α1− 2α2
. (69)

As the final answer we set

α∗2 = 1
2

[
α∗2(1, 0)+ α2(1, 1)

]
. (70)

Substituting the numerical values from equation (57) into formulae (68) and (69), we
have

α∗2(1, 0) = 1.1813 α∗2(1, 1) = 1.1919.

Hence, equation (70) yields

α∗2 = 1.1906.
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This value of the critical screening parameter coincides with the result of numerical
integration [11].

In conclusion, we have applied the self-similar renormalization theory [15–19] to
calculating the energy and the critical screening parameter for the Schrödinger equation
with the Yukawa potential. The calculated values are in good agreement with the results of
the numerical computation. This demonstrates that renormalization-group techniques can be
successfully employed to solve the Schrödinger equation, not only with simple anharmonic
potentials [28, 29], but also for more realistic cases, such as the Yukawa potential that is
often met in different physical problems. To obtain an accurate value of the critical screening
parameter, we have used a method analogous to algebraic self-similar renormalization [30].
We have considered here mainly the ground-state level, although the procedure we have
demonstrated is also applicable to excited levels, but calculations then become a little more
cumbersome. We hope that the results we have obtained are sufficient for showing the
usefulness of renormalization-group techniques in quantum mechanics.
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